Let T : Cn Cn be a linear transformation. We say v Cn is a generalized eigenvector of T with corresponding eigenvalue if v _= 0 and (T I)k(v) = 0 for some positive integer k. Define the generalized -eigenspace E () = {v Cn : v N _ (T I)k _ for some positive integer k}. a. Prove that E() is a subspace of Cn. b. Prove that T ( E()) E().

1.13.16 (Week 2, #1) • coding region: structural gene • Introns: non coding regions (intervening sequence) • transcription: non coding regions can be removed • exons: linear sequence of DNA (coding region) TRANSCRIPTION: using a DNA template to make a complementary RNA > complementary; 2 strains (pre-mRNA; codes for polypeptides) • DNA Template 3’ to 5’ strand...