×
Log in to StudySoup
Get Full Access to Numerical Analysis - 10 Edition - Chapter 7.3 - Problem 4
Join StudySoup for FREE
Get Full Access to Numerical Analysis - 10 Edition - Chapter 7.3 - Problem 4

Already have an account? Login here
×
Reset your password

Repeat Exercise 2 using the Gauss-Seidel method

Numerical Analysis | 10th Edition | ISBN: 9781305253667 | Authors: Richard L. Burden J. Douglas Faires, Annette M. Burden ISBN: 9781305253667 457

Solution for problem 4 Chapter 7.3

Numerical Analysis | 10th Edition

  • Textbook Solutions
  • 2901 Step-by-step solutions solved by professors and subject experts
  • Get 24/7 help from StudySoup virtual teaching assistants
Numerical Analysis | 10th Edition | ISBN: 9781305253667 | Authors: Richard L. Burden J. Douglas Faires, Annette M. Burden

Numerical Analysis | 10th Edition

4 5 1 375 Reviews
10
0
Problem 4

Repeat Exercise 2 using the Gauss-Seidel method

Step-by-Step Solution:
Step 1 of 3

Product Rule If F(x)=f(x)g(x), Then F’(x)=f(x)g’(x) + f’(x)g(x) Ex. d/dx [ (4x^3 - x^2 -1)(x^3 -2x^2 + 3x +1)] = (4x^3 - X^2 - 1) (3x^2- 4x + 3) = (12x^2 -2x)(x^3 - 2x^2 + 3x + 1) However the product rule is more useful for the product of different types of functions Ex. f(x)= x^2cos(x) g(x) = e^x arctan(x) Proof of the Product Rule Let F(x) = f(x)g(x) F’(x) = lim ((F(x + h ) - F(x))/h) h 0 =lim ((f(x + h )g( x + h) - f(x)g(x))/h) h 0 Subtract and add f(x + h)g(x) = lim ((f( x + h)g(x + h) - f(x + h)g(x) + f(x + h) - g(x) - f(x)g(x))/h) h 0 = lim ((f( x + h)(g( x + h) - g(x)) + g(x)(f( x + h) - f(x))/h) h 0 = lim ((f ( x+ h)(g( x + h) - g(x))/h) + (g(x)f(x + h) - f(x)/h) h 0 = lim (f( x + h) lim ((g(x + h) - g(x))/h

Step 2 of 3

Chapter 7.3, Problem 4 is Solved
Step 3 of 3

Textbook: Numerical Analysis
Edition: 10
Author: Richard L. Burden J. Douglas Faires, Annette M. Burden
ISBN: 9781305253667

Other solutions

People also purchased

Related chapters

Unlock Textbook Solution

Enter your email below to unlock your verified solution to:

Repeat Exercise 2 using the Gauss-Seidel method