×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.2: Solutions of Linear Homogeneous Equations; the Wronskian

Elementary Differential Equations and Boundary Value Problems | 10th Edition | ISBN: 9780470458310 | Authors: William E. Boyce

Full solutions for Elementary Differential Equations and Boundary Value Problems | 10th Edition

ISBN: 9780470458310

Elementary Differential Equations and Boundary Value Problems | 10th Edition | ISBN: 9780470458310 | Authors: William E. Boyce

Solutions for Chapter 3.2: Solutions of Linear Homogeneous Equations; the Wronskian

Solutions for Chapter 3.2
4 5 0 336 Reviews
17
0
Textbook: Elementary Differential Equations and Boundary Value Problems
Edition: 10
Author: William E. Boyce
ISBN: 9780470458310

Chapter 3.2: Solutions of Linear Homogeneous Equations; the Wronskian includes 51 full step-by-step solutions. Since 51 problems in chapter 3.2: Solutions of Linear Homogeneous Equations; the Wronskian have been answered, more than 16934 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 10. This expansive textbook survival guide covers the following chapters and their solutions. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9780470458310.

Key Math Terms and definitions covered in this textbook
  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password