 Chapter 1: AN INTRODUCTION TO DATA AND FUNCTIONS
 Chapter 2: RATES OF CHANGE AND LINEAR FUNCTIONS
 Chapter 3: WHEN LINES MEET: LINEAR SYSTEMS
 Chapter 4: THE LAWS OF EXPONENTS AND LOGARITHMS: MEASURING THE UNIVERSE
 Chapter 5: GROWTH AND DECAY: AN INTRODUCTION TO EXPONENTIAL FUNCTIONS
 Chapter 6: LOGARITHMIC LINKS: LOGARITHMIC AND EXPONENTIAL FUNCTIONS
 Chapter 7: POWER FUNCTIONS
 Chapter 8: QUADRATICS AND THE MATHEMATICS OF MOTION
 Chapter 9: NEW FUNCTIONS FROM OLD
Explorations in College Algebra 5th Edition  Solutions by Chapter
Full solutions for Explorations in College Algebra  5th Edition
ISBN: 9780470466445
Explorations in College Algebra  5th Edition  Solutions by Chapter
Get Full SolutionsExplorations in College Algebra was written by and is associated to the ISBN: 9780470466445. This expansive textbook survival guide covers the following chapters: 9. This textbook survival guide was created for the textbook: Explorations in College Algebra, edition: 5. Since problems from 9 chapters in Explorations in College Algebra have been answered, more than 13252 students have viewed full stepbystep answer. The full stepbystep solution to problem in Explorations in College Algebra were answered by , our top Math solution expert on 12/23/17, 04:55PM.

Adjacency matrix of a graph.
Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

Cross product u xv in R3:
Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.
Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

Fast Fourier Transform (FFT).
A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn1c can be computed with ne/2 multiplications. Revolutionary.

Identity matrix I (or In).
Diagonal entries = 1, offdiagonal entries = 0.

Incidence matrix of a directed graph.
The m by n edgenode incidence matrix has a row for each edge (node i to node j), with entries 1 and 1 in columns i and j .

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

Linear combination cv + d w or L C jV j.
Vector addition and scalar multiplication.

Positive definite matrix A.
Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

Pseudoinverse A+ (MoorePenrose inverse).
The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

Row space C (AT) = all combinations of rows of A.
Column vectors by convention.

Semidefinite matrix A.
(Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Singular matrix A.
A square matrix that has no inverse: det(A) = o.

Singular Value Decomposition
(SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

Spectrum of A = the set of eigenvalues {A I, ... , An}.
Spectral radius = max of IAi I.

Symmetric matrix A.
The transpose is AT = A, and aU = a ji. AI is also symmetric.

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·

Volume of box.
The rows (or the columns) of A generate a box with volume I det(A) I.