 Chapter 1: AN INTRODUCTION TO DATA AND FUNCTIONS
 Chapter 2: RATES OF CHANGE AND LINEAR FUNCTIONS
 Chapter 3: WHEN LINES MEET: LINEAR SYSTEMS
 Chapter 4: THE LAWS OF EXPONENTS AND LOGARITHMS: MEASURING THE UNIVERSE
 Chapter 5: GROWTH AND DECAY: AN INTRODUCTION TO EXPONENTIAL FUNCTIONS
 Chapter 6: LOGARITHMIC LINKS: LOGARITHMIC AND EXPONENTIAL FUNCTIONS
 Chapter 7: POWER FUNCTIONS
 Chapter 8: QUADRATICS AND THE MATHEMATICS OF MOTION
 Chapter 9: NEW FUNCTIONS FROM OLD
Explorations in College Algebra 5th Edition  Solutions by Chapter
Full solutions for Explorations in College Algebra  5th Edition
ISBN: 9780470466445
Explorations in College Algebra  5th Edition  Solutions by Chapter
Get Full SolutionsExplorations in College Algebra was written by and is associated to the ISBN: 9780470466445. This expansive textbook survival guide covers the following chapters: 9. This textbook survival guide was created for the textbook: Explorations in College Algebra, edition: 5. Since problems from 9 chapters in Explorations in College Algebra have been answered, more than 4842 students have viewed full stepbystep answer. The full stepbystep solution to problem in Explorations in College Algebra were answered by , our top Math solution expert on 12/23/17, 04:55PM.

Cross product u xv in R3:
Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

Diagonalization
A = S1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k SI.

Ellipse (or ellipsoid) x T Ax = 1.
A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA1 yll2 = Y T(AAT)1 Y = 1 displayed by eigshow; axis lengths ad

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

Kirchhoff's Laws.
Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

Least squares solution X.
The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b  Ax is orthogonal to all columns of A.

Left inverse A+.
If A has full column rank n, then A+ = (AT A)I AT has A+ A = In.

Linear transformation T.
Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

Multiplicities AM and G M.
The algebraic multiplicity A M of A is the number of times A appears as a root of det(A  AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

Orthogonal subspaces.
Every v in V is orthogonal to every w in W.

Outer product uv T
= column times row = rank one matrix.

Permutation matrix P.
There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or 1) based on the number of row exchanges to reach I.

Reduced row echelon form R = rref(A).
Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

Saddle point of I(x}, ... ,xn ).
A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

Schur complement S, D  C A } B.
Appears in block elimination on [~ g ].

Singular matrix A.
A square matrix that has no inverse: det(A) = o.

Stiffness matrix
If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

Symmetric factorizations A = LDLT and A = QAQT.
Signs in A = signs in D.

Symmetric matrix A.
The transpose is AT = A, and aU = a ji. AI is also symmetric.