Solutions for Chapter 116: Complex Numbers and Polar Coordinates
Full solutions for Trigonometry  7th Edition
ISBN: 9781111826857
Solutions for Chapter 116: Complex Numbers and Polar Coordinates
Get Full SolutionsSince 1 problems in chapter 116: Complex Numbers and Polar Coordinates have been answered, more than 25016 students have viewed full stepbystep solutions from this chapter. Chapter 116: Complex Numbers and Polar Coordinates includes 1 full stepbystep solutions. This expansive textbook survival guide covers the following chapters and their solutions. Trigonometry was written by and is associated to the ISBN: 9781111826857. This textbook survival guide was created for the textbook: Trigonometry, edition: 7.

Basis for V.
Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

Commuting matrices AB = BA.
If diagonalizable, they share n eigenvectors.

Cyclic shift
S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

Diagonalization
A = S1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k SI.

Eigenvalue A and eigenvector x.
Ax = AX with x#O so det(A  AI) = o.

Ellipse (or ellipsoid) x T Ax = 1.
A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA1 yll2 = Y T(AAT)1 Y = 1 displayed by eigshow; axis lengths ad

Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).
Use AT for complex A.

GramSchmidt orthogonalization A = QR.
Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

Hessenberg matrix H.
Triangular matrix with one extra nonzero adjacent diagonal.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Jordan form 1 = M 1 AM.
If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

Markov matrix M.
All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

Network.
A directed graph that has constants Cl, ... , Cm associated with the edges.

Pivot.
The diagonal entry (first nonzero) at the time when a row is used in elimination.

Saddle point of I(x}, ... ,xn ).
A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

Schur complement S, D  C A } B.
Appears in block elimination on [~ g ].

Spanning set.
Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

Symmetric factorizations A = LDLT and A = QAQT.
Signs in A = signs in D.

Toeplitz matrix.
Constant down each diagonal = timeinvariant (shiftinvariant) filter.

Unitary matrix UH = U T = UI.
Orthonormal columns (complex analog of Q).