×
Log in to StudySoup
Get Full Access to Trigonometry - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Trigonometry - Textbook Survival Guide

Solutions for Chapter 1-16: Complex Numbers and Polar Coordinates

Trigonometry | 7th Edition | ISBN: 9781111826857 | Authors: Charles P. McKeague

Full solutions for Trigonometry | 7th Edition

ISBN: 9781111826857

Trigonometry | 7th Edition | ISBN: 9781111826857 | Authors: Charles P. McKeague

Solutions for Chapter 1-16: Complex Numbers and Polar Coordinates

Solutions for Chapter 1-16
4 5 0 415 Reviews
26
0

Since 1 problems in chapter 1-16: Complex Numbers and Polar Coordinates have been answered, more than 25016 students have viewed full step-by-step solutions from this chapter. Chapter 1-16: Complex Numbers and Polar Coordinates includes 1 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Trigonometry was written by and is associated to the ISBN: 9781111826857. This textbook survival guide was created for the textbook: Trigonometry, edition: 7.

Key Math Terms and definitions covered in this textbook
  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Trigonometry - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Trigonometry - Textbook Survival Guide
×
Reset your password