×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide
Textbooks / Math / Elementary Linear Algebra: A Matrix Approach 2

Elementary Linear Algebra: A Matrix Approach 2nd Edition - Solutions by Chapter

Elementary Linear Algebra: A Matrix Approach | 2nd Edition | ISBN: 9780131871410 | Authors: Lawrence E. Spence

Full solutions for Elementary Linear Algebra: A Matrix Approach | 2nd Edition

ISBN: 9780131871410

Elementary Linear Algebra: A Matrix Approach | 2nd Edition | ISBN: 9780131871410 | Authors: Lawrence E. Spence

Elementary Linear Algebra: A Matrix Approach | 2nd Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 267 Reviews
Textbook: Elementary Linear Algebra: A Matrix Approach
Edition: 2
Author: Lawrence E. Spence
ISBN: 9780131871410

This textbook survival guide was created for the textbook: Elementary Linear Algebra: A Matrix Approach, edition: 2. Elementary Linear Algebra: A Matrix Approach was written by and is associated to the ISBN: 9780131871410. Since problems from 34 chapters in Elementary Linear Algebra: A Matrix Approach have been answered, more than 18414 students have viewed full step-by-step answer. This expansive textbook survival guide covers the following chapters: 34. The full step-by-step solution to problem in Elementary Linear Algebra: A Matrix Approach were answered by , our top Math solution expert on 12/27/17, 07:57PM.

Key Math Terms and definitions covered in this textbook
  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

×
Log in to StudySoup
Get Full Access to Algebra - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Algebra - Textbook Survival Guide
×
Reset your password