> > Elementary Linear Algebra: A Matrix Approach 2

Elementary Linear Algebra: A Matrix Approach 2nd Edition - Solutions by Chapter

Elementary Linear Algebra: A Matrix Approach | 2nd Edition | ISBN: 9780131871410 | Authors: Lawrence E. Spence

Full solutions for Elementary Linear Algebra: A Matrix Approach | 2nd Edition

ISBN: 9780131871410

Elementary Linear Algebra: A Matrix Approach | 2nd Edition | ISBN: 9780131871410 | Authors: Lawrence E. Spence

Elementary Linear Algebra: A Matrix Approach | 2nd Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 349 Reviews
Textbook: Elementary Linear Algebra: A Matrix Approach
Edition: 2
Author: Lawrence E. Spence
ISBN: 9780131871410

This textbook survival guide was created for the textbook: Elementary Linear Algebra: A Matrix Approach, edition: 2. Elementary Linear Algebra: A Matrix Approach was written by Patricia and is associated to the ISBN: 9780131871410. Since problems from 34 chapters in Elementary Linear Algebra: A Matrix Approach have been answered, more than 8588 students have viewed full step-by-step answer. This expansive textbook survival guide covers the following chapters: 34. The full step-by-step solution to problem in Elementary Linear Algebra: A Matrix Approach were answered by Patricia, our top Math solution expert on 12/27/17, 07:57PM.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Outer product uv T

    = column times row = rank one matrix.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Elementary Linear Algebra: A Matrix Approach

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Elementary Linear Algebra: A Matrix Approach
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here