 LAB 8.1.1: For the function f (x) chosen above, compute the corresponding Newt...
 LAB 8.1.2: Compute the first 20 points of the orbits under N(x) for the initia...
 LAB 8.1.3: Repeat Part 2 for the points x0 = 0.30, 0.32, 0.34, 0.36, 0.38,...,...
Solutions for Chapter LAB 8.1: Newtons Method as a Difference Equation
Full solutions for Differential Equations 00  4th Edition
ISBN: 9780495561989
Solutions for Chapter LAB 8.1: Newtons Method as a Difference Equation
Get Full SolutionsThis expansive textbook survival guide covers the following chapters and their solutions. Chapter LAB 8.1: Newtons Method as a Difference Equation includes 3 full stepbystep solutions. Differential Equations 00 was written by and is associated to the ISBN: 9780495561989. This textbook survival guide was created for the textbook: Differential Equations 00, edition: 4. Since 3 problems in chapter LAB 8.1: Newtons Method as a Difference Equation have been answered, more than 15605 students have viewed full stepbystep solutions from this chapter.

Adjacency matrix of a graph.
Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

Circulant matrix C.
Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn  l . Cx = convolution c * x. Eigenvectors in F.

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Elimination matrix = Elementary matrix Eij.
The identity matrix with an extra eij in the i, j entry (i # j). Then Eij A subtracts eij times row j of A from row i.

Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).
Use AT for complex A.

Hankel matrix H.
Constant along each antidiagonal; hij depends on i + j.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Kirchhoff's Laws.
Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

Matrix multiplication AB.
The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

Minimal polynomial of A.
The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A  AI) if no eigenvalues are repeated; always meA) divides peA).

Orthogonal matrix Q.
Square matrix with orthonormal columns, so QT = Ql. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Particular solution x p.
Any solution to Ax = b; often x p has free variables = o.

Pascal matrix
Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

Rotation matrix
R = [~ CS ] rotates the plane by () and R 1 = RT rotates back by (). Eigenvalues are eiO and eiO , eigenvectors are (1, ±i). c, s = cos (), sin ().

Special solutions to As = O.
One free variable is Si = 1, other free variables = o.

Symmetric factorizations A = LDLT and A = QAQT.
Signs in A = signs in D.

Trace of A
= sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

Vector space V.
Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.