×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter B.4: Exponential and Logarithmic Functions

Trigonometry | ISBN: 9780495108351 | Authors: Charles P McKeague

Full solutions for Trigonometry

ISBN: 9780495108351

Trigonometry | ISBN: 9780495108351 | Authors: Charles P McKeague

Solutions for Chapter B.4: Exponential and Logarithmic Functions

Solutions for Chapter B.4
4 5 0 369 Reviews
24
3
Textbook: Trigonometry
Edition:
Author: Charles P McKeague
ISBN: 9780495108351

Trigonometry was written by and is associated to the ISBN: 9780495108351. This textbook survival guide was created for the textbook: Trigonometry, edition: . Chapter B.4: Exponential and Logarithmic Functions includes 70 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 70 problems in chapter B.4: Exponential and Logarithmic Functions have been answered, more than 31791 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password