×
Log in to StudySoup

Forgot password? Reset password here

Textbooks > Math > Differential Equations with Boundary-Value Problems, 8

Differential Equations with Boundary-Value Problems, 8th Edition - Solutions by Chapter

Differential Equations with Boundary-Value Problems, | 8th Edition | ISBN: 9781111827069 | Authors: Dennis G. Zill, Warren S. Wright

Full solutions for Differential Equations with Boundary-Value Problems, | 8th Edition

ISBN: 9781111827069

Differential Equations with Boundary-Value Problems, | 8th Edition | ISBN: 9781111827069 | Authors: Dennis G. Zill, Warren S. Wright

Differential Equations with Boundary-Value Problems, | 8th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 397 Reviews
Textbook: Differential Equations with Boundary-Value Problems,
Edition: 8
Author: Dennis G. Zill, Warren S. Wright
ISBN: 9781111827069

Differential Equations with Boundary-Value Problems, was written by and is associated to the ISBN: 9781111827069. This expansive textbook survival guide covers the following chapters: 85. This textbook survival guide was created for the textbook: Differential Equations with Boundary-Value Problems,, edition: 8. Since problems from 85 chapters in Differential Equations with Boundary-Value Problems, have been answered, more than 12534 students have viewed full step-by-step answer. The full step-by-step solution to problem in Differential Equations with Boundary-Value Problems, were answered by , our top Math solution expert on 01/02/18, 09:05PM.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here