 Chapter 1: Equations, Inequalities, and Mathematical Modeling
 Chapter 2: Functions and Their Graphs
 Chapter 3: Polynomial Functions
 Chapter 4: Rational Functions and Conics
 Chapter 5: Exponential and Logarithmic Functions
 Chapter 6: Systems of Equations and Inequalities
 Chapter 7: Matrices and Determinants
 Chapter 8: Sequences, Series, and Probability
 Chapter P: Prerequisites
College Algebra 9th Edition  Solutions by Chapter
Full solutions for College Algebra  9th Edition
ISBN: 9781133963028
College Algebra  9th Edition  Solutions by Chapter
Get Full SolutionsThe full stepbystep solution to problem in College Algebra were answered by Patricia, our top Math solution expert on 01/02/18, 09:21PM. This expansive textbook survival guide covers the following chapters: 9. Since problems from 9 chapters in College Algebra have been answered, more than 5516 students have viewed full stepbystep answer. This textbook survival guide was created for the textbook: College Algebra, edition: 9. College Algebra was written by Patricia and is associated to the ISBN: 9781133963028.

Complex conjugate
z = a  ib for any complex number z = a + ib. Then zz = Iz12.

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Diagonalizable matrix A.
Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then SI AS = A = eigenvalue matrix.

Eigenvalue A and eigenvector x.
Ax = AX with x#O so det(A  AI) = o.

Full column rank r = n.
Independent columns, N(A) = {O}, no free variables.

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

Graph G.
Set of n nodes connected pairwise by m edges. A complete graph has all n(n  1)/2 edges between nodes. A tree has only n  1 edges and no closed loops.

Hilbert matrix hilb(n).
Entries HU = 1/(i + j 1) = Jd X i 1 xj1dx. Positive definite but extremely small Amin and large condition number: H is illconditioned.

Jordan form 1 = M 1 AM.
If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

Left inverse A+.
If A has full column rank n, then A+ = (AT A)I AT has A+ A = In.

Matrix multiplication AB.
The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Normal equation AT Ax = ATb.
Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b  Ax) = o.

Nullspace N (A)
= All solutions to Ax = O. Dimension n  r = (# columns)  rank.

Outer product uv T
= column times row = rank one matrix.

Random matrix rand(n) or randn(n).
MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Subspace S of V.
Any vector space inside V, including V and Z = {zero vector only}.

Trace of A
= sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

Volume of box.
The rows (or the columns) of A generate a box with volume I det(A) I.
I don't want to reset my password
Need help? Contact support
Having trouble accessing your account? Let us help you, contact support at +1(510) 9441054 or support@studysoup.com
Forgot password? Reset it here