 Chapter 1: Equations, Inequalities, and Mathematical Modeling
 Chapter 2: Functions and Their Graphs
 Chapter 3: Polynomial Functions
 Chapter 4: Rational Functions and Conics
 Chapter 5: Exponential and Logarithmic Functions
 Chapter 6: Systems of Equations and Inequalities
 Chapter 7: Matrices and Determinants
 Chapter 8: Sequences, Series, and Probability
 Chapter P: Prerequisites
College Algebra 9th Edition  Solutions by Chapter
Full solutions for College Algebra  9th Edition
ISBN: 9781133963028
College Algebra  9th Edition  Solutions by Chapter
Get Full SolutionsThe full stepbystep solution to problem in College Algebra were answered by , our top Math solution expert on 01/02/18, 09:21PM. This expansive textbook survival guide covers the following chapters: 9. Since problems from 9 chapters in College Algebra have been answered, more than 28595 students have viewed full stepbystep answer. This textbook survival guide was created for the textbook: College Algebra, edition: 9. College Algebra was written by and is associated to the ISBN: 9781133963028.

Back substitution.
Upper triangular systems are solved in reverse order Xn to Xl.

Characteristic equation det(A  AI) = O.
The n roots are the eigenvalues of A.

Complex conjugate
z = a  ib for any complex number z = a + ib. Then zz = Iz12.

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib IIĀ· Condition numbers measure the sensitivity of the output to change in the input.

Ellipse (or ellipsoid) x T Ax = 1.
A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA1 yll2 = Y T(AAT)1 Y = 1 displayed by eigshow; axis lengths ad

Exponential eAt = I + At + (At)2 12! + ...
has derivative AeAt; eAt u(O) solves u' = Au.

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

Graph G.
Set of n nodes connected pairwise by m edges. A complete graph has all n(n  1)/2 edges between nodes. A tree has only n  1 edges and no closed loops.

Hessenberg matrix H.
Triangular matrix with one extra nonzero adjacent diagonal.

Indefinite matrix.
A symmetric matrix with eigenvalues of both signs (+ and  ).

Left inverse A+.
If A has full column rank n, then A+ = (AT A)I AT has A+ A = In.

Length II x II.
Square root of x T x (Pythagoras in n dimensions).

Multiplier eij.
The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

Orthogonal subspaces.
Every v in V is orthogonal to every w in W.

Partial pivoting.
In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

Pivot.
The diagonal entry (first nonzero) at the time when a row is used in elimination.

Saddle point of I(x}, ... ,xn ).
A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

Standard basis for Rn.
Columns of n by n identity matrix (written i ,j ,k in R3).

Transpose matrix AT.
Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and AI are BT AT and (AT)I.

Vandermonde matrix V.
V c = b gives coefficients of p(x) = Co + ... + Cn_IXn 1 with P(Xi) = bi. Vij = (Xi)jI and det V = product of (Xk  Xi) for k > i.