> > Elementary Linear Algebra 7

# Elementary Linear Algebra 7th Edition - Solutions by Chapter

## Full solutions for Elementary Linear Algebra | 7th Edition

ISBN: 9781133110873

Elementary Linear Algebra | 7th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 429 Reviews
##### ISBN: 9781133110873

Elementary Linear Algebra was written by Patricia and is associated to the ISBN: 9781133110873. The full step-by-step solution to problem in Elementary Linear Algebra were answered by Patricia, our top Math solution expert on 01/03/18, 08:36PM. Since problems from 7 chapters in Elementary Linear Algebra have been answered, more than 6317 students have viewed full step-by-step answer. This textbook survival guide was created for the textbook: Elementary Linear Algebra, edition: 7. This expansive textbook survival guide covers the following chapters: 7.

Key Math Terms and definitions covered in this textbook
• Associative Law (AB)C = A(BC).

Parentheses can be removed to leave ABC.

• Cayley-Hamilton Theorem.

peA) = det(A - AI) has peA) = zero matrix.

A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

• Distributive Law

A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

• Elimination.

A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

• Exponential eAt = I + At + (At)2 12! + ...

has derivative AeAt; eAt u(O) solves u' = Au.

• Fast Fourier Transform (FFT).

A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

• Gauss-Jordan method.

Invert A by row operations on [A I] to reach [I A-I].

• Iterative method.

A sequence of steps intended to approach the desired solution.

• Markov matrix M.

All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

• Matrix multiplication AB.

The i, j entry of AB is (row i of A)ยท(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

• Orthogonal matrix Q.

Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

• Pseudoinverse A+ (Moore-Penrose inverse).

The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

• Random matrix rand(n) or randn(n).

MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

• Schur complement S, D - C A -} B.

Appears in block elimination on [~ g ].

• Singular Value Decomposition

(SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

• Skew-symmetric matrix K.

The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

• Vandermonde matrix V.

V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

• Vector v in Rn.

Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

• Volume of box.

The rows (or the columns) of A generate a box with volume I det(A) I.

×

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
We're here to help