 Chapter 1: Systems of Linear Equations
 Chapter 2: Matrices
 Chapter 3: Determinants
 Chapter 4: Vector Spaces
 Chapter 5: Inner Product Spaces
 Chapter 6: Inner Product Spaces
 Chapter 7: Eigenvalues and Eigenvectors
Elementary Linear Algebra 7th Edition  Solutions by Chapter
Full solutions for Elementary Linear Algebra  7th Edition
ISBN: 9781133110873
Elementary Linear Algebra  7th Edition  Solutions by Chapter
Get Full SolutionsElementary Linear Algebra was written by and is associated to the ISBN: 9781133110873. The full stepbystep solution to problem in Elementary Linear Algebra were answered by , our top Math solution expert on 01/03/18, 08:36PM. Since problems from 7 chapters in Elementary Linear Algebra have been answered, more than 8281 students have viewed full stepbystep answer. This textbook survival guide was created for the textbook: Elementary Linear Algebra, edition: 7. This expansive textbook survival guide covers the following chapters: 7.

Complex conjugate
z = a  ib for any complex number z = a + ib. Then zz = Iz12.

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.
Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).
Use AT for complex A.

Free columns of A.
Columns without pivots; these are combinations of earlier columns.

GramSchmidt orthogonalization A = QR.
Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Incidence matrix of a directed graph.
The m by n edgenode incidence matrix has a row for each edge (node i to node j), with entries 1 and 1 in columns i and j .

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

lAII = l/lAI and IATI = IAI.
The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n  1, volume of box = I det( A) I.

Linear transformation T.
Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Normal equation AT Ax = ATb.
Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b  Ax) = o.

Nullspace N (A)
= All solutions to Ax = O. Dimension n  r = (# columns)  rank.

Orthogonal matrix Q.
Square matrix with orthonormal columns, so QT = Ql. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Orthogonal subspaces.
Every v in V is orthogonal to every w in W.

Reflection matrix (Householder) Q = I 2uuT.
Unit vector u is reflected to Qu = u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q1 = Q.

Subspace S of V.
Any vector space inside V, including V and Z = {zero vector only}.

Symmetric matrix A.
The transpose is AT = A, and aU = a ji. AI is also symmetric.

Vector v in Rn.
Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.