 Chapter 1: Systems of Linear Equations
 Chapter 2: Matrices
 Chapter 3: Determinants
 Chapter 4: Vector Spaces
 Chapter 5: Inner Product Spaces
 Chapter 6: Inner Product Spaces
 Chapter 7: Eigenvalues and Eigenvectors
Elementary Linear Algebra 7th Edition  Solutions by Chapter
Full solutions for Elementary Linear Algebra  7th Edition
ISBN: 9781133110873
Elementary Linear Algebra  7th Edition  Solutions by Chapter
Get Full SolutionsElementary Linear Algebra was written by and is associated to the ISBN: 9781133110873. The full stepbystep solution to problem in Elementary Linear Algebra were answered by , our top Math solution expert on 01/03/18, 08:36PM. Since problems from 7 chapters in Elementary Linear Algebra have been answered, more than 10495 students have viewed full stepbystep answer. This textbook survival guide was created for the textbook: Elementary Linear Algebra, edition: 7. This expansive textbook survival guide covers the following chapters: 7.

Affine transformation
Tv = Av + Vo = linear transformation plus shift.

Cholesky factorization
A = CTC = (L.J]))(L.J]))T for positive definite A.

Circulant matrix C.
Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn  l . Cx = convolution c * x. Eigenvectors in F.

Column picture of Ax = b.
The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

Complex conjugate
z = a  ib for any complex number z = a + ib. Then zz = Iz12.

Cross product u xv in R3:
Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

Diagonalizable matrix A.
Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then SI AS = A = eigenvalue matrix.

Diagonalization
A = S1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k SI.

Exponential eAt = I + At + (At)2 12! + ...
has derivative AeAt; eAt u(O) solves u' = Au.

Fourier matrix F.
Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

GaussJordan method.
Invert A by row operations on [A I] to reach [I AI].

Inverse matrix AI.
Square matrix with AI A = I and AAl = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B1 AI and (AI)T. Cofactor formula (Al)ij = Cji! detA.

Kronecker product (tensor product) A ® B.
Blocks aij B, eigenvalues Ap(A)Aq(B).

Lucas numbers
Ln = 2,J, 3, 4, ... satisfy Ln = L n l +Ln 2 = A1 +A~, with AI, A2 = (1 ± /5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

Network.
A directed graph that has constants Cl, ... , Cm associated with the edges.

Pascal matrix
Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

Pivot columns of A.
Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

Pseudoinverse A+ (MoorePenrose inverse).
The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

Rank r (A)
= number of pivots = dimension of column space = dimension of row space.

Row space C (AT) = all combinations of rows of A.
Column vectors by convention.