×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 1.5: Linear First-Order Equations

Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition | ISBN: 9780321796981 | Authors: C. Henry Edwards, David E. Penney, David T. Calvis

Full solutions for Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition

ISBN: 9780321796981

Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition | ISBN: 9780321796981 | Authors: C. Henry Edwards, David E. Penney, David T. Calvis

Solutions for Chapter 1.5: Linear First-Order Equations

Solutions for Chapter 1.5
4 5 0 376 Reviews
14
2
Textbook: Differential Equations and Boundary Value Problems: Computing and Modeling
Edition: 5
Author: C. Henry Edwards, David E. Penney, David T. Calvis
ISBN: 9780321796981

Differential Equations and Boundary Value Problems: Computing and Modeling was written by and is associated to the ISBN: 9780321796981. This expansive textbook survival guide covers the following chapters and their solutions. Since 46 problems in chapter 1.5: Linear First-Order Equations have been answered, more than 16611 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Differential Equations and Boundary Value Problems: Computing and Modeling, edition: 5. Chapter 1.5: Linear First-Order Equations includes 46 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Outer product uv T

    = column times row = rank one matrix.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password