×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.7: Electrical Circuits

Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition | ISBN: 9780321796981 | Authors: C. Henry Edwards, David E. Penney, David T. Calvis

Full solutions for Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition

ISBN: 9780321796981

Differential Equations and Boundary Value Problems: Computing and Modeling | 5th Edition | ISBN: 9780321796981 | Authors: C. Henry Edwards, David E. Penney, David T. Calvis

Solutions for Chapter 3.7: Electrical Circuits

Solutions for Chapter 3.7
4 5 0 383 Reviews
24
5
Textbook: Differential Equations and Boundary Value Problems: Computing and Modeling
Edition: 5
Author: C. Henry Edwards, David E. Penney, David T. Calvis
ISBN: 9780321796981

Differential Equations and Boundary Value Problems: Computing and Modeling was written by and is associated to the ISBN: 9780321796981. Since 25 problems in chapter 3.7: Electrical Circuits have been answered, more than 16579 students have viewed full step-by-step solutions from this chapter. Chapter 3.7: Electrical Circuits includes 25 full step-by-step solutions. This textbook survival guide was created for the textbook: Differential Equations and Boundary Value Problems: Computing and Modeling, edition: 5. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password