×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Partial Differential Equations: An Introduction 2

Partial Differential Equations: An Introduction 2nd Edition - Solutions by Chapter

Partial Differential Equations: An Introduction | 2nd Edition | ISBN: 9780470054567 | Authors: Walter A. Strauss

Full solutions for Partial Differential Equations: An Introduction | 2nd Edition

ISBN: 9780470054567

Partial Differential Equations: An Introduction | 2nd Edition | ISBN: 9780470054567 | Authors: Walter A. Strauss

Partial Differential Equations: An Introduction | 2nd Edition - Solutions by Chapter

Partial Differential Equations: An Introduction was written by and is associated to the ISBN: 9780470054567. This textbook survival guide was created for the textbook: Partial Differential Equations: An Introduction, edition: 2. Since problems from 14 chapters in Partial Differential Equations: An Introduction have been answered, more than 8377 students have viewed full step-by-step answer. This expansive textbook survival guide covers the following chapters: 14. The full step-by-step solution to problem in Partial Differential Equations: An Introduction were answered by , our top Math solution expert on 01/05/18, 06:22PM.

Key Math Terms and definitions covered in this textbook
  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Outer product uv T

    = column times row = rank one matrix.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.