×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 7.7: Product-to-Sum and Sum-to-Product Formulas

Precalculus Enhanced with Graphing Utilities | 6th Edition | ISBN: 9780132854351 | Authors: Michael Sullivan

Full solutions for Precalculus Enhanced with Graphing Utilities | 6th Edition

ISBN: 9780132854351

Precalculus Enhanced with Graphing Utilities | 6th Edition | ISBN: 9780132854351 | Authors: Michael Sullivan

Solutions for Chapter 7.7: Product-to-Sum and Sum-to-Product Formulas

Solutions for Chapter 7.7
4 5 0 244 Reviews
13
3
Textbook: Precalculus Enhanced with Graphing Utilities
Edition: 6
Author: Michael Sullivan
ISBN: 9780132854351

This textbook survival guide was created for the textbook: Precalculus Enhanced with Graphing Utilities, edition: 6. Precalculus Enhanced with Graphing Utilities was written by and is associated to the ISBN: 9780132854351. Chapter 7.7: Product-to-Sum and Sum-to-Product Formulas includes 56 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 56 problems in chapter 7.7: Product-to-Sum and Sum-to-Product Formulas have been answered, more than 54465 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib IIĀ· Condition numbers measure the sensitivity of the output to change in the input.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password