×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter P-2: Solving Equations and Inequalities

Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition | ISBN: 9781305071735 | Authors: Ron Larson

Full solutions for Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition

ISBN: 9781305071735

Algebra and Trigonometry: Real Mathematics, Real People | 7th Edition | ISBN: 9781305071735 | Authors: Ron Larson

Solutions for Chapter P-2: Solving Equations and Inequalities

Solutions for Chapter P-2
4 5 0 420 Reviews
18
1
Textbook: Algebra and Trigonometry: Real Mathematics, Real People
Edition: 7
Author: Ron Larson
ISBN: 9781305071735

Since 46 problems in chapter P-2: Solving Equations and Inequalities have been answered, more than 61040 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Algebra and Trigonometry: Real Mathematics, Real People was written by and is associated to the ISBN: 9781305071735. This textbook survival guide was created for the textbook: Algebra and Trigonometry: Real Mathematics, Real People, edition: 7. Chapter P-2: Solving Equations and Inequalities includes 46 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password