 Chapter 1: Line and Angle Relationships
 Chapter 10: Analytic Geometry
 Chapter 11: Introduction to Trigonometry
 Chapter 2: Parallel Lines
 Chapter 3: Triangles
 Chapter 4: Quadrilaterals
 Chapter 5: Similar Triangles
 Chapter 6: Circles
 Chapter 7: Locus and Concurrence
 Chapter 8: Areas of Polygons and Circles
 Chapter 9: Surfaces and Solids
Elementary Geometry for College Students 6th Edition  Solutions by Chapter
Full solutions for Elementary Geometry for College Students  6th Edition
ISBN: 9781285195698
Elementary Geometry for College Students  6th Edition  Solutions by Chapter
Get Full SolutionsElementary Geometry for College Students was written by Patricia and is associated to the ISBN: 9781285195698. Since problems from 11 chapters in Elementary Geometry for College Students have been answered, more than 1963 students have viewed full stepbystep answer. This expansive textbook survival guide covers the following chapters: 11. The full stepbystep solution to problem in Elementary Geometry for College Students were answered by Patricia, our top Math solution expert on 01/29/18, 03:43PM. This textbook survival guide was created for the textbook: Elementary Geometry for College Students, edition: 6.

Affine transformation
Tv = Av + Vo = linear transformation plus shift.

Characteristic equation det(A  AI) = O.
The n roots are the eigenvalues of A.

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

Diagonalizable matrix A.
Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then SI AS = A = eigenvalue matrix.

Fourier matrix F.
Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Jordan form 1 = M 1 AM.
If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

lAII = l/lAI and IATI = IAI.
The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n  1, volume of box = I det( A) I.

Random matrix rand(n) or randn(n).
MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

Reduced row echelon form R = rref(A).
Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

Reflection matrix (Householder) Q = I 2uuT.
Unit vector u is reflected to Qu = u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q1 = Q.

Schwarz inequality
Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

Semidefinite matrix A.
(Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Simplex method for linear programming.
The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Spanning set.
Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

Spectral Theorem A = QAQT.
Real symmetric A has real A'S and orthonormal q's.

Trace of A
= sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

Wavelets Wjk(t).
Stretch and shift the time axis to create Wjk(t) = woo(2j t  k).
I don't want to reset my password
Need help? Contact support
Having trouble accessing your account? Let us help you, contact support at +1(510) 9441054 or support@studysoup.com
Forgot password? Reset it here