×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) 3

Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) 3rd Edition - Solutions by Chapter

Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) | 3rd Edition | ISBN: 9780538735452 | Authors: David Poole

Full solutions for Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) | 3rd Edition

ISBN: 9780538735452

Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) | 3rd Edition | ISBN: 9780538735452 | Authors: David Poole

Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) | 3rd Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 315 Reviews

Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) was written by and is associated to the ISBN: 9780538735452. This expansive textbook survival guide covers the following chapters: 7. The full step-by-step solution to problem in Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) were answered by , our top Math solution expert on 01/29/18, 04:03PM. This textbook survival guide was created for the textbook: Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign), edition: 3. Since problems from 7 chapters in Linear Algebra: A Modern Introduction (Available 2011 Titles Enhanced Web Assign) have been answered, more than 66123 students have viewed full step-by-step answer.

Key Math Terms and definitions covered in this textbook
  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).