×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5-2: Solving Quadratic Equations by Graphing

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Full solutions for Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition

ISBN: 9780078738302

Algebra 2, Student Edition (MERRILL ALGEBRA 2) | 1st Edition | ISBN: 9780078738302 | Authors: McGraw-Hill Education

Solutions for Chapter 5-2: Solving Quadratic Equations by Graphing

Solutions for Chapter 5-2
4 5 0 386 Reviews
11
1
Textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2)
Edition: 1
Author: McGraw-Hill Education
ISBN: 9780078738302

Chapter 5-2: Solving Quadratic Equations by Graphing includes 65 full step-by-step solutions. Since 65 problems in chapter 5-2: Solving Quadratic Equations by Graphing have been answered, more than 56111 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Algebra 2, Student Edition (MERRILL ALGEBRA 2), edition: 1. This expansive textbook survival guide covers the following chapters and their solutions. Algebra 2, Student Edition (MERRILL ALGEBRA 2) was written by and is associated to the ISBN: 9780078738302.

Key Math Terms and definitions covered in this textbook
  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password