Make $16/hr - and build your resume - as a Marketing Coordinator! Apply Now
> > Geometry (Holt McDougal Larson Geometry) 1

Geometry (Holt McDougal Larson Geometry) 1st Edition - Solutions by Chapter

Geometry (Holt McDougal Larson Geometry) | 1st Edition | ISBN: 9780618595402 | Authors: Ron Larson Laurie Boswell Timothy D. Kanold, Lee Stiff

Full solutions for Geometry (Holt McDougal Larson Geometry) | 1st Edition

ISBN: 9780618595402

Geometry (Holt McDougal Larson Geometry) | 1st Edition | ISBN: 9780618595402 | Authors: Ron Larson Laurie Boswell Timothy D. Kanold, Lee Stiff

Geometry (Holt McDougal Larson Geometry) | 1st Edition - Solutions by Chapter

The full step-by-step solution to problem in Geometry (Holt McDougal Larson Geometry) were answered by Patricia, our top Math solution expert on 03/02/18, 04:34PM. This expansive textbook survival guide covers the following chapters: 12. Geometry (Holt McDougal Larson Geometry) was written by Patricia and is associated to the ISBN: 9780618595402. This textbook survival guide was created for the textbook: Geometry (Holt McDougal Larson Geometry), edition: 1. Since problems from 12 chapters in Geometry (Holt McDougal Larson Geometry) have been answered, more than 8674 students have viewed full step-by-step answer.

Key Math Terms and definitions covered in this textbook
  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Outer product uv T

    = column times row = rank one matrix.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Geometry (Holt McDougal Larson Geometry)

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Geometry (Holt McDougal Larson Geometry)
Join with Facebook

or

Join with Email
Already have an account? Login here
Forgot password? Reset your password here

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here