×
Log in to StudySoup

Forgot password? Reset password here

Textbooks > Math > Algebra 1, Student Edition (MERRILL ALGEBRA 1) 1

Algebra 1, Student Edition (MERRILL ALGEBRA 1) 1st Edition - Solutions by Chapter

Algebra 1, Student Edition (MERRILL ALGEBRA 1) | 1st Edition | ISBN: 9780078738227 | Authors: Berchie Holliday, Gilbert J. Cuevas, Beatrice Luchin, Ruth M. Casey, Linda M. Hayek, John A. Carter, Daniel Marks, Roger Day, & 2 more

Full solutions for Algebra 1, Student Edition (MERRILL ALGEBRA 1) | 1st Edition

ISBN: 9780078738227

Algebra 1, Student Edition (MERRILL ALGEBRA 1) | 1st Edition | ISBN: 9780078738227 | Authors: Berchie Holliday, Gilbert J. Cuevas, Beatrice Luchin, Ruth M. Casey, Linda M. Hayek, John A. Carter, Daniel Marks, Roger Day, & 2 more

Algebra 1, Student Edition (MERRILL ALGEBRA 1) | 1st Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 387 Reviews
Textbook: Algebra 1, Student Edition (MERRILL ALGEBRA 1)
Edition: 1
Author: Berchie Holliday, Gilbert J. Cuevas, Beatrice Luchin, Ruth M. Casey, Linda M. Hayek, John A. Carter, Daniel Marks, Roger Day, & 2 more
ISBN: 9780078738227

Since problems from 95 chapters in Algebra 1, Student Edition (MERRILL ALGEBRA 1) have been answered, more than 22616 students have viewed full step-by-step answer. The full step-by-step solution to problem in Algebra 1, Student Edition (MERRILL ALGEBRA 1) were answered by , our top Math solution expert on 03/08/18, 07:31PM. This textbook survival guide was created for the textbook: Algebra 1, Student Edition (MERRILL ALGEBRA 1) , edition: 1. This expansive textbook survival guide covers the following chapters: 95. Algebra 1, Student Edition (MERRILL ALGEBRA 1) was written by and is associated to the ISBN: 9780078738227.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here