×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.7: Derivatives of the Logarithmic and Inverse Tangent Functions

Biocalculus: Calculus for Life Sciences | 1st Edition | ISBN: 9781133109631 | Authors: James Stewart, Troy Day

Full solutions for Biocalculus: Calculus for Life Sciences | 1st Edition

ISBN: 9781133109631

Biocalculus: Calculus for Life Sciences | 1st Edition | ISBN: 9781133109631 | Authors: James Stewart, Troy Day

Solutions for Chapter 3.7: Derivatives of the Logarithmic and Inverse Tangent Functions

Solutions for Chapter 3.7
4 5 0 260 Reviews
15
3
Textbook: Biocalculus: Calculus for Life Sciences
Edition: 1
Author: James Stewart, Troy Day
ISBN: 9781133109631

Biocalculus: Calculus for Life Sciences was written by and is associated to the ISBN: 9781133109631. Since 56 problems in chapter 3.7: Derivatives of the Logarithmic and Inverse Tangent Functions have been answered, more than 27379 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 3.7: Derivatives of the Logarithmic and Inverse Tangent Functions includes 56 full step-by-step solutions. This textbook survival guide was created for the textbook: Biocalculus: Calculus for Life Sciences , edition: 1.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)ยท(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password