×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 10-3: THE EMPLOYERS PAYROLL TAXES

Business Math, | 9th Edition | ISBN: 9780135108178 | Authors: Cheryl Cleaves, Margie Hobbs, Jeffrey Noble

Full solutions for Business Math, | 9th Edition

ISBN: 9780135108178

Business Math, | 9th Edition | ISBN: 9780135108178 | Authors: Cheryl Cleaves, Margie Hobbs, Jeffrey Noble

Solutions for Chapter 10-3: THE EMPLOYERS PAYROLL TAXES

This textbook survival guide was created for the textbook: Business Math, , edition: 9. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 10-3: THE EMPLOYERS PAYROLL TAXES includes 7 full step-by-step solutions. Business Math, was written by and is associated to the ISBN: 9780135108178. Since 7 problems in chapter 10-3: THE EMPLOYERS PAYROLL TAXES have been answered, more than 17927 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password