×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 9.5: Discrete Mathematics and Its Applications 7th Edition

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Full solutions for Discrete Mathematics and Its Applications | 7th Edition

ISBN: 9780073383095

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Solutions for Chapter 9.5

Solutions for Chapter 9.5
4 5 0 283 Reviews
18
5
Textbook: Discrete Mathematics and Its Applications
Edition: 7
Author: Kenneth Rosen
ISBN: 9780073383095

Chapter 9.5 includes 69 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Discrete Mathematics and Its Applications, edition: 7. Since 69 problems in chapter 9.5 have been answered, more than 186707 students have viewed full step-by-step solutions from this chapter. Discrete Mathematics and Its Applications was written by and is associated to the ISBN: 9780073383095.

Key Math Terms and definitions covered in this textbook
  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password