×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.1: Discrete Mathematics and Its Applications 7th Edition

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Full solutions for Discrete Mathematics and Its Applications | 7th Edition

ISBN: 9780073383095

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Solutions for Chapter 3.1

Solutions for Chapter 3.1
4 5 0 249 Reviews
26
3
Textbook: Discrete Mathematics and Its Applications
Edition: 7
Author: Kenneth Rosen
ISBN: 9780073383095

This textbook survival guide was created for the textbook: Discrete Mathematics and Its Applications, edition: 7. Discrete Mathematics and Its Applications was written by and is associated to the ISBN: 9780073383095. Chapter 3.1 includes 63 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 63 problems in chapter 3.1 have been answered, more than 163914 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password