Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
Reset your password

Solutions for Chapter 4.1: Discrete Mathematics and Its Applications 7th Edition

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Full solutions for Discrete Mathematics and Its Applications | 7th Edition

ISBN: 9780073383095

Discrete Mathematics and Its Applications | 7th Edition | ISBN: 9780073383095 | Authors: Kenneth Rosen

Solutions for Chapter 4.1

Solutions for Chapter 4.1
4 5 0 398 Reviews
Textbook: Discrete Mathematics and Its Applications
Edition: 7
Author: Kenneth Rosen
ISBN: 9780073383095

This textbook survival guide was created for the textbook: Discrete Mathematics and Its Applications, edition: 7. Discrete Mathematics and Its Applications was written by and is associated to the ISBN: 9780073383095. Since 47 problems in chapter 4.1 have been answered, more than 437135 students have viewed full step-by-step solutions from this chapter. Chapter 4.1 includes 47 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.