×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 8.6: Combinatorics: Combinations

College Algebra: Graphs and Models | 5th Edition | ISBN: 9780321783950 | Authors: Marvin L. Bittinger, Judith A. Beecher, David J. Ellenbogen, Judith A. Penna

Full solutions for College Algebra: Graphs and Models | 5th Edition

ISBN: 9780321783950

College Algebra: Graphs and Models | 5th Edition | ISBN: 9780321783950 | Authors: Marvin L. Bittinger, Judith A. Beecher, David J. Ellenbogen, Judith A. Penna

Solutions for Chapter 8.6: Combinatorics: Combinations

Solutions for Chapter 8.6
4 5 0 245 Reviews
29
2
Textbook: College Algebra: Graphs and Models
Edition: 5
Author: Marvin L. Bittinger, Judith A. Beecher, David J. Ellenbogen, Judith A. Penna
ISBN: 9780321783950

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 8.6: Combinatorics: Combinations includes 41 full step-by-step solutions. College Algebra: Graphs and Models was written by and is associated to the ISBN: 9780321783950. Since 41 problems in chapter 8.6: Combinatorics: Combinations have been answered, more than 25844 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: College Algebra: Graphs and Models, edition: 5.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password