×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 8.2: The Principle of Inclusion-Exclusion

Discrete Mathematics | 1st Edition | ISBN: 9781577667308 | Authors: Gary Chartrand, Ping Zhang

Full solutions for Discrete Mathematics | 1st Edition

ISBN: 9781577667308

Discrete Mathematics | 1st Edition | ISBN: 9781577667308 | Authors: Gary Chartrand, Ping Zhang

Solutions for Chapter 8.2: The Principle of Inclusion-Exclusion

Chapter 8.2: The Principle of Inclusion-Exclusion includes 17 full step-by-step solutions. Since 17 problems in chapter 8.2: The Principle of Inclusion-Exclusion have been answered, more than 12271 students have viewed full step-by-step solutions from this chapter. Discrete Mathematics was written by and is associated to the ISBN: 9781577667308. This textbook survival guide was created for the textbook: Discrete Mathematics, edition: 1. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Outer product uv T

    = column times row = rank one matrix.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password