×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 11.3: Boolean Algebras

Discrete Mathematics | 1st Edition | ISBN: 9781577667308 | Authors: Gary Chartrand, Ping Zhang

Full solutions for Discrete Mathematics | 1st Edition

ISBN: 9781577667308

Discrete Mathematics | 1st Edition | ISBN: 9781577667308 | Authors: Gary Chartrand, Ping Zhang

Solutions for Chapter 11.3: Boolean Algebras

Chapter 11.3: Boolean Algebras includes 16 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Discrete Mathematics was written by and is associated to the ISBN: 9781577667308. This textbook survival guide was created for the textbook: Discrete Mathematics, edition: 1. Since 16 problems in chapter 11.3: Boolean Algebras have been answered, more than 13878 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password