×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Elementary Differential Equations and Boundary Value Problems 11

Elementary Differential Equations and Boundary Value Problems 11th Edition - Solutions by Chapter

Elementary Differential Equations and Boundary Value Problems | 11th Edition | ISBN: 9781119256007 | Authors: Boyce, Diprima, Meade

Full solutions for Elementary Differential Equations and Boundary Value Problems | 11th Edition

ISBN: 9781119256007

Elementary Differential Equations and Boundary Value Problems | 11th Edition | ISBN: 9781119256007 | Authors: Boyce, Diprima, Meade

Elementary Differential Equations and Boundary Value Problems | 11th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 384 Reviews
Textbook: Elementary Differential Equations and Boundary Value Problems
Edition: 11
Author: Boyce, Diprima, Meade
ISBN: 9781119256007

This expansive textbook survival guide covers the following chapters: 75. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 11. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9781119256007. The full step-by-step solution to problem in Elementary Differential Equations and Boundary Value Problems were answered by , our top Math solution expert on 03/13/18, 08:17PM. Since problems from 75 chapters in Elementary Differential Equations and Boundary Value Problems have been answered, more than 29566 students have viewed full step-by-step answer.

Key Math Terms and definitions covered in this textbook
  • Column space C (A) =

    space of all combinations of the columns of A.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Outer product uv T

    = column times row = rank one matrix.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.