×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 7.3: Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors

Full solutions for Elementary Differential Equations | 10th Edition

ISBN: 9780470458327

Solutions for Chapter 7.3: Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors

Solutions for Chapter 7.3
4 5 0 402 Reviews
31
1
Textbook: Elementary Differential Equations
Edition: 10
Author: William E. Boyce, Richard C. DiPrima
ISBN: 9780470458327

This textbook survival guide was created for the textbook: Elementary Differential Equations, edition: 10. Chapter 7.3: Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors includes 34 full step-by-step solutions. Elementary Differential Equations was written by and is associated to the ISBN: 9780470458327. This expansive textbook survival guide covers the following chapters and their solutions. Since 34 problems in chapter 7.3: Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors have been answered, more than 11384 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password