×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.2: Evaluation of a Determinant Using Elementary Operations

Full solutions for Elementary Linear Algebra | 6th Edition

ISBN: 9780618783762

Solutions for Chapter 3.2: Evaluation of a Determinant Using Elementary Operations

Solutions for Chapter 3.2
4 5 0 246 Reviews
28
0
Textbook: Elementary Linear Algebra
Edition: 6
Author: Ron Larson, David C. Falvo
ISBN: 9780618783762

This expansive textbook survival guide covers the following chapters and their solutions. Since 56 problems in chapter 3.2: Evaluation of a Determinant Using Elementary Operations have been answered, more than 19523 students have viewed full step-by-step solutions from this chapter. Elementary Linear Algebra was written by and is associated to the ISBN: 9780618783762. Chapter 3.2: Evaluation of a Determinant Using Elementary Operations includes 56 full step-by-step solutions. This textbook survival guide was created for the textbook: Elementary Linear Algebra, edition: 6.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B IIĀ·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password