×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.4: Linear Functions and Slope

Full solutions for Intermediate Algebra for College Students | 6th Edition

ISBN: 9780321758934

Solutions for Chapter 2.4: Linear Functions and Slope

Solutions for Chapter 2.4
4 5 0 396 Reviews
19
3
Textbook: Intermediate Algebra for College Students
Edition: 6
Author: Robert F. Blitzer
ISBN: 9780321758934

Intermediate Algebra for College Students was written by and is associated to the ISBN: 9780321758934. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Intermediate Algebra for College Students, edition: 6. Chapter 2.4: Linear Functions and Slope includes 125 full step-by-step solutions. Since 125 problems in chapter 2.4: Linear Functions and Slope have been answered, more than 52748 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password