×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.3: Symmetric Matrices and Seriation in Archaeology

Full solutions for Linear Algebra with Applications | 8th Edition

ISBN: 9781449679545

Solutions for Chapter 2.3: Symmetric Matrices and Seriation in Archaeology

Solutions for Chapter 2.3
4 5 0 290 Reviews
17
3
Textbook: Linear Algebra with Applications
Edition: 8
Author: Gareth Williams
ISBN: 9781449679545

This expansive textbook survival guide covers the following chapters and their solutions. Since 31 problems in chapter 2.3: Symmetric Matrices and Seriation in Archaeology have been answered, more than 8759 students have viewed full step-by-step solutions from this chapter. Chapter 2.3: Symmetric Matrices and Seriation in Archaeology includes 31 full step-by-step solutions. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 8. Linear Algebra with Applications was written by and is associated to the ISBN: 9781449679545.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password