Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
Reset your password

Textbooks / Math / Linear Algebra with Applications 8

Linear Algebra with Applications 8th Edition - Solutions by Chapter

Full solutions for Linear Algebra with Applications | 8th Edition

ISBN: 9780136009290

Linear Algebra with Applications | 8th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 305 Reviews
Textbook: Linear Algebra with Applications
Edition: 8
Author: Steve Leon
ISBN: 9780136009290

Since problems from 47 chapters in Linear Algebra with Applications have been answered, more than 17481 students have viewed full step-by-step answer. The full step-by-step solution to problem in Linear Algebra with Applications were answered by , our top Math solution expert on 03/15/18, 05:24PM. Linear Algebra with Applications was written by and is associated to the ISBN: 9780136009290. This expansive textbook survival guide covers the following chapters: 47. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 8.

Key Math Terms and definitions covered in this textbook
  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B IIĀ·

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.