Make $16/hr - and build your resume - as a Marketing Coordinator! Apply Now
> > Linear Algebra with Applications 9

Linear Algebra with Applications 9th Edition - Solutions by Chapter

Full solutions for Linear Algebra with Applications | 9th Edition

ISBN: 9780321962218

Linear Algebra with Applications | 9th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 245 Reviews
Textbook: Linear Algebra with Applications
Edition: 9
Author: Steven J. Leon
ISBN: 9780321962218

This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 9. Linear Algebra with Applications was written by and is associated to the ISBN: 9780321962218. This expansive textbook survival guide covers the following chapters: 47. Since problems from 47 chapters in Linear Algebra with Applications have been answered, more than 2494 students have viewed full step-by-step answer. The full step-by-step solution to problem in Linear Algebra with Applications were answered by , our top Math solution expert on 03/15/18, 05:26PM.

Key Math Terms and definitions covered in this textbook
  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

×
Log in to StudySoup
Get Full Access to Linear Algebra with Applications

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Linear Algebra with Applications
Join with Email
Already have an account? Login here
Forgot password? Reset your password here

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here