 Chapter 1: Matrices and Systems of Equations
 Chapter 1.1: Systems of Linear Equations
 Chapter 1.2: Row Echelon Form
 Chapter 1.3: Matrix Arithmetic
 Chapter 1.4: Matrix Algebra
 Chapter 1.5: Elementary Matrices
 Chapter 1.6: Partitioned Matrices
 Chapter 2: Determinants
 Chapter 2.1: The Determinant of a Matrix
 Chapter 2.2: Properties of Determinants
 Chapter 2.3: Additional Topics and Applications
 Chapter 3: Vector Spaces
 Chapter 3.1: Definition and Examples
 Chapter 3.2: Subspaces
 Chapter 3.3: Linear Independence
 Chapter 3.4: Basis and Dimension
 Chapter 3.5: Change of Basis
 Chapter 3.6: Row Space and Column Space
 Chapter 4: Linear Transformations
 Chapter 4.1: Definition and Examples
 Chapter 4.2: Matrix Representations of Linear Transformations
 Chapter 4.3: Similarity
 Chapter 5: Orthogonality
 Chapter 5.1: The Scalar Product in Rn
 Chapter 5.2: Orthogonal Subspaces
 Chapter 5.3: Least Squares Problems
 Chapter 5.4: Inner Product Spaces
 Chapter 5.5: Orthonormal Sets
 Chapter 5.6: The GramSchmidt Orthogonalization Process
 Chapter 5.7: Orthogonal Polynomials
 Chapter 6: Eigenvalues
 Chapter 6.1: Eigenvalues and Eigenvectors
 Chapter 6.2: Systems of Linear Differential Equations
 Chapter 6.3: Diagonalization
 Chapter 6.4: Hermitian Matrices
 Chapter 6.5: The Singular Value Decomposition
 Chapter 6.6: Quadratic Forms
 Chapter 6.7: Positive Definite Matrices
 Chapter 6.8: Nonnegative Matrices
 Chapter 7: Numerical Linear Algebra
 Chapter 7.1: FloatingPoint Numbers
 Chapter 7.2: Gaussian Elimination
 Chapter 7.3: Pivoting Strategies
 Chapter 7.4: Matrix Norms and Condition Numbers
 Chapter 7.5: Orthogonal Transformations
 Chapter 7.6: The Eigenvalue Problem
 Chapter 7.7: Least Squares Problems
Linear Algebra with Applications 9th Edition  Solutions by Chapter
Full solutions for Linear Algebra with Applications  9th Edition
ISBN: 9780321962218
Linear Algebra with Applications  9th Edition  Solutions by Chapter
Get Full SolutionsThis textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 9. Linear Algebra with Applications was written by and is associated to the ISBN: 9780321962218. This expansive textbook survival guide covers the following chapters: 47. Since problems from 47 chapters in Linear Algebra with Applications have been answered, more than 11868 students have viewed full stepbystep answer. The full stepbystep solution to problem in Linear Algebra with Applications were answered by , our top Math solution expert on 03/15/18, 05:26PM.

Complete solution x = x p + Xn to Ax = b.
(Particular x p) + (x n in nullspace).

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

Determinant IAI = det(A).
Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

Diagonalizable matrix A.
Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then SI AS = A = eigenvalue matrix.

Diagonalization
A = S1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k SI.

Elimination matrix = Elementary matrix Eij.
The identity matrix with an extra eij in the i, j entry (i # j). Then Eij A subtracts eij times row j of A from row i.

Full column rank r = n.
Independent columns, N(A) = {O}, no free variables.

Graph G.
Set of n nodes connected pairwise by m edges. A complete graph has all n(n  1)/2 edges between nodes. A tree has only n  1 edges and no closed loops.

Hilbert matrix hilb(n).
Entries HU = 1/(i + j 1) = Jd X i 1 xj1dx. Positive definite but extremely small Amin and large condition number: H is illconditioned.

Identity matrix I (or In).
Diagonal entries = 1, offdiagonal entries = 0.

Indefinite matrix.
A symmetric matrix with eigenvalues of both signs (+ and  ).

Kirchhoff's Laws.
Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

Linear combination cv + d w or L C jV j.
Vector addition and scalar multiplication.

Matrix multiplication AB.
The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

Normal equation AT Ax = ATb.
Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b  Ax) = o.

Normal matrix.
If N NT = NT N, then N has orthonormal (complex) eigenvectors.

Pivot columns of A.
Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

Pseudoinverse A+ (MoorePenrose inverse).
The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

Semidefinite matrix A.
(Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·