×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter Chapter 3: Counting and Relations

Full solutions for Mathematics: A Discrete Introduction | 3rd Edition

ISBN: 9780840049421

Solutions for Chapter Chapter 3: Counting and Relations

Solutions for Chapter Chapter 3
4 5 0 264 Reviews
31
0
Textbook: Mathematics: A Discrete Introduction
Edition: 3
Author: Edward A. Scheinerman
ISBN: 9780840049421

Since 22 problems in chapter Chapter 3: Counting and Relations have been answered, more than 9270 students have viewed full step-by-step solutions from this chapter. Mathematics: A Discrete Introduction was written by and is associated to the ISBN: 9780840049421. Chapter Chapter 3: Counting and Relations includes 22 full step-by-step solutions. This textbook survival guide was created for the textbook: Mathematics: A Discrete Introduction, edition: 3. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)ยท(b - Ax) = o.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password