×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.3: Newton's Method and Its Extensions

Numerical Analysis | 10th Edition | ISBN: 9781305253667 | Authors: Richard L. Burden J. Douglas Faires, Annette M. Burden

Full solutions for Numerical Analysis | 10th Edition

ISBN: 9781305253667

Numerical Analysis | 10th Edition | ISBN: 9781305253667 | Authors: Richard L. Burden J. Douglas Faires, Annette M. Burden

Solutions for Chapter 2.3: Newton's Method and Its Extensions

Solutions for Chapter 2.3
4 5 0 310 Reviews
27
3
Textbook: Numerical Analysis
Edition: 10
Author: Richard L. Burden J. Douglas Faires, Annette M. Burden
ISBN: 9781305253667

Chapter 2.3: Newton's Method and Its Extensions includes 32 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Numerical Analysis was written by and is associated to the ISBN: 9781305253667. Since 32 problems in chapter 2.3: Newton's Method and Its Extensions have been answered, more than 13809 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Numerical Analysis, edition: 10.

Key Math Terms and definitions covered in this textbook
  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password