 5.8.1: Use the Extrapolation Algorithm with tolerance TOL = 104, hmax = 0....
 5.8.2: Use the Extrapolation Algorithm with TOL = 104 to approximate the s...
 5.8.3: Use the Extrapolation Algorithm with tolerance TOL = 106, hmax = 0....
 5.8.4: Let P(t) be the number of individuals in a population at time t, me...
Solutions for Chapter 5.8: Extrapolation Methods
Full solutions for Numerical Analysis  9th Edition
ISBN: 9780538733519
Solutions for Chapter 5.8: Extrapolation Methods
Get Full SolutionsSince 4 problems in chapter 5.8: Extrapolation Methods have been answered, more than 15553 students have viewed full stepbystep solutions from this chapter. This textbook survival guide was created for the textbook: Numerical Analysis, edition: 9. This expansive textbook survival guide covers the following chapters and their solutions. Numerical Analysis was written by and is associated to the ISBN: 9780538733519. Chapter 5.8: Extrapolation Methods includes 4 full stepbystep solutions.

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

Cholesky factorization
A = CTC = (L.J]))(L.J]))T for positive definite A.

Companion matrix.
Put CI, ... ,Cn in row n and put n  1 ones just above the main diagonal. Then det(A  AI) = ±(CI + c2A + C3A 2 + .•. + cnA nl  An).

Conjugate Gradient Method.
A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax  x Tb over growing Krylov subspaces.

Dimension of vector space
dim(V) = number of vectors in any basis for V.

Distributive Law
A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

Eigenvalue A and eigenvector x.
Ax = AX with x#O so det(A  AI) = o.

Inverse matrix AI.
Square matrix with AI A = I and AAl = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B1 AI and (AI)T. Cofactor formula (Al)ij = Cji! detA.

Normal matrix.
If N NT = NT N, then N has orthonormal (complex) eigenvectors.

Nullspace N (A)
= All solutions to Ax = O. Dimension n  r = (# columns)  rank.

Positive definite matrix A.
Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

Projection p = a(aTblaTa) onto the line through a.
P = aaT laTa has rank l.

Reduced row echelon form R = rref(A).
Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

Right inverse A+.
If A has full row rank m, then A+ = AT(AAT)l has AA+ = 1m.

Row space C (AT) = all combinations of rows of A.
Column vectors by convention.

Schwarz inequality
Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Spectral Theorem A = QAQT.
Real symmetric A has real A'S and orthonormal q's.

Vandermonde matrix V.
V c = b gives coefficients of p(x) = Co + ... + Cn_IXn 1 with P(Xi) = bi. Vij = (Xi)jI and det V = product of (Xk  Xi) for k > i.

Vector v in Rn.
Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.