 12.1.1: Use Algorithm 12.1 to approximate the solution to the elliptic part...
 12.1.2: Use Algorithm 12.1 to approximate the solution to the elliptic part...
 12.1.3: Approximate the solutions to the following elliptic partial differe...
 12.1.4: Repeat Exercise 3(a) using extrapolation with h0 = 0.2, h1 = h0/2, ...
 12.1.5: Construct an algorithm similar to Algorithm 12.1, except use the SO...
 12.1.6: Repeat Exercise 3 using the algorithm constructed in Exercise 5.
 12.1.7: A coaxial cable is made of a 0.1in.square inner conductor and a 0...
 12.1.8: A 6cm by 5cm rectangular silver plate has heat being uniformly ge...
Solutions for Chapter 12.1: Elliptic Partial Differential Equations
Full solutions for Numerical Analysis  9th Edition
ISBN: 9780538733519
Solutions for Chapter 12.1: Elliptic Partial Differential Equations
Get Full SolutionsChapter 12.1: Elliptic Partial Differential Equations includes 8 full stepbystep solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Numerical Analysis, edition: 9. Numerical Analysis was written by and is associated to the ISBN: 9780538733519. Since 8 problems in chapter 12.1: Elliptic Partial Differential Equations have been answered, more than 13783 students have viewed full stepbystep solutions from this chapter.

Adjacency matrix of a graph.
Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

Block matrix.
A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

Change of basis matrix M.
The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

Cofactor Cij.
Remove row i and column j; multiply the determinant by (I)i + j •

Column space C (A) =
space of all combinations of the columns of A.

Cross product u xv in R3:
Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

Cyclic shift
S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

Echelon matrix U.
The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

Fourier matrix F.
Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

Hermitian matrix A H = AT = A.
Complex analog a j i = aU of a symmetric matrix.

Inverse matrix AI.
Square matrix with AI A = I and AAl = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B1 AI and (AI)T. Cofactor formula (Al)ij = Cji! detA.

Orthogonal matrix Q.
Square matrix with orthonormal columns, so QT = Ql. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Pivot columns of A.
Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

Reduced row echelon form R = rref(A).
Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

Reflection matrix (Householder) Q = I 2uuT.
Unit vector u is reflected to Qu = u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q1 = Q.

Spanning set.
Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

Special solutions to As = O.
One free variable is Si = 1, other free variables = o.

Symmetric factorizations A = LDLT and A = QAQT.
Signs in A = signs in D.

Symmetric matrix A.
The transpose is AT = A, and aU = a ji. AI is also symmetric.

Trace of A
= sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.