×
×

# Solutions for Chapter 13: Problems About Comparing Elapsed-Time Problems

## Full solutions for Saxon Math, Course 1 | 1st Edition

ISBN: 9781591417835

Solutions for Chapter 13: Problems About Comparing Elapsed-Time Problems

Solutions for Chapter 13
4 5 0 362 Reviews
20
4
##### ISBN: 9781591417835

This expansive textbook survival guide covers the following chapters and their solutions. Saxon Math, Course 1 was written by and is associated to the ISBN: 9781591417835. Since 30 problems in chapter 13: Problems About Comparing Elapsed-Time Problems have been answered, more than 33474 students have viewed full step-by-step solutions from this chapter. Chapter 13: Problems About Comparing Elapsed-Time Problems includes 30 full step-by-step solutions. This textbook survival guide was created for the textbook: Saxon Math, Course 1, edition: 1.

Key Math Terms and definitions covered in this textbook
• Basis for V.

Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

• Block matrix.

A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

• Cayley-Hamilton Theorem.

peA) = det(A - AI) has peA) = zero matrix.

• Cramer's Rule for Ax = b.

B j has b replacing column j of A; x j = det B j I det A

• Cyclic shift

S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

• Diagonalizable matrix A.

Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

• Fourier matrix F.

Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

• Graph G.

Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

• Hermitian matrix A H = AT = A.

Complex analog a j i = aU of a symmetric matrix.

• Hessenberg matrix H.

Triangular matrix with one extra nonzero adjacent diagonal.

• Left inverse A+.

If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

• Linearly dependent VI, ... , Vn.

A combination other than all Ci = 0 gives L Ci Vi = O.

• Matrix multiplication AB.

The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

• Norm

IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

• Normal equation AT Ax = ATb.

Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

• Projection p = a(aTblaTa) onto the line through a.

P = aaT laTa has rank l.

• Rank r (A)

= number of pivots = dimension of column space = dimension of row space.

• Row picture of Ax = b.

Each equation gives a plane in Rn; the planes intersect at x.

• Similar matrices A and B.

Every B = M-I AM has the same eigenvalues as A.

• Special solutions to As = O.

One free variable is Si = 1, other free variables = o.

×