Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
Reset your password

Solutions for Chapter 114: Unit Multipliers

Saxon Math, Course 1 | 1st Edition | ISBN: 9781591417835 | Authors: Stephan Hake

Full solutions for Saxon Math, Course 1 | 1st Edition

ISBN: 9781591417835

Saxon Math, Course 1 | 1st Edition | ISBN: 9781591417835 | Authors: Stephan Hake

Solutions for Chapter 114: Unit Multipliers

Solutions for Chapter 114
4 5 0 263 Reviews
Textbook: Saxon Math, Course 1
Edition: 1
Author: Stephan Hake
ISBN: 9781591417835

Since 30 problems in chapter 114: Unit Multipliers have been answered, more than 39244 students have viewed full step-by-step solutions from this chapter. Chapter 114: Unit Multipliers includes 30 full step-by-step solutions. Saxon Math, Course 1 was written by and is associated to the ISBN: 9781591417835. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Saxon Math, Course 1, edition: 1.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.