> > Discrete Mathematics with Applications 4th

# Discrete Mathematics with Applications 4th Edition - Solutions by Chapter

## Full solutions for Discrete Mathematics with Applications | 4th Edition

ISBN: 9780495391326

Discrete Mathematics with Applications | 4th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 392 Reviews
##### ISBN: 9780495391326

This expansive textbook survival guide covers the following chapters: 131. Since problems from 131 chapters in Discrete Mathematics with Applications have been answered, more than 28349 students have viewed full step-by-step answer. Discrete Mathematics with Applications was written by and is associated to the ISBN: 9780495391326. The full step-by-step solution to problem in Discrete Mathematics with Applications were answered by , our top Math solution expert on 07/19/17, 06:34AM. This textbook survival guide was created for the textbook: Discrete Mathematics with Applications , edition: 4th.

Key Math Terms and definitions covered in this textbook
• Big formula for n by n determinants.

Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

• Cayley-Hamilton Theorem.

peA) = det(A - AI) has peA) = zero matrix.

• Cross product u xv in R3:

Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

• Exponential eAt = I + At + (At)2 12! + ...

has derivative AeAt; eAt u(O) solves u' = Au.

• Fibonacci numbers

0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

• Graph G.

Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

• Jordan form 1 = M- 1 AM.

If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

• Multiplication Ax

= Xl (column 1) + ... + xn(column n) = combination of columns.

• Norm

IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

• Pascal matrix

Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

• Projection matrix P onto subspace S.

Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

• Random matrix rand(n) or randn(n).

MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

• Schur complement S, D - C A -} B.

Appears in block elimination on [~ g ].

• Solvable system Ax = b.

The right side b is in the column space of A.

• Spanning set.

Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

• Special solutions to As = O.

One free variable is Si = 1, other free variables = o.

• Spectral Theorem A = QAQT.

Real symmetric A has real A'S and orthonormal q's.

• Symmetric factorizations A = LDLT and A = QAQT.

Signs in A = signs in D.

v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

• Wavelets Wjk(t).

Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
We're here to help