Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
Reset your password

Textbooks / Math / College Algebra 9

College Algebra 9th Edition - Solutions by Chapter

Full solutions for College Algebra | 9th Edition

ISBN: 9780321716811

College Algebra | 9th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 324 Reviews
Textbook: College Algebra
Edition: 9
Author: Michael Sullivan
ISBN: 9780321716811

The full step-by-step solution to problem in College Algebra were answered by , our top Math solution expert on 03/19/18, 03:33PM. College Algebra was written by and is associated to the ISBN: 9780321716811. This expansive textbook survival guide covers the following chapters: 68. Since problems from 68 chapters in College Algebra have been answered, more than 60692 students have viewed full step-by-step answer. This textbook survival guide was created for the textbook: College Algebra, edition: 9.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.