 Chapter 1: Trigonometric Functions
 Chapter 1.1: Angles
 Chapter 1.2: Angle Relationships and Similar Triangles
 Chapter 1.3: Trigonometric Functions
 Chapter 1.4: Using the Definitions of the Trigonometric Functions
 Chapter 2: Acute Angles and Right Triangles
 Chapter 2.1: Trigonometric Functions of Acute Angles
 Chapter 2.2: Trigonometric Functions of NonAcute Angles
 Chapter 2.3: Approximations of Trigonometric Function Values
 Chapter 2.4: Solutions and Applications of Right Triangles
 Chapter 2.5: Further Applications of Right Triangles
 Chapter 3: Radian Measure and the Unit Circle
 Chapter 3.1: Radian Measure
 Chapter 3.2: Applications of Radian Measure
 Chapter 3.3: The Unit Circle and Circular Functions
 Chapter 3.4: Linear and Angular Speed
 Chapter 4: Graphs of the Circular Functions
 Chapter 4.1: Graphs of the Sine and Cosine Functions
 Chapter 4.2: Translations of the Graphs of the Sine and Cosine Functions
 Chapter 4.3: Graphs of the Tangent and Cotangent Functions
 Chapter 4.4: Graphs of the Secant and Cosecant Functions
 Chapter 4.5: Harmonic Motion
 Chapter 5: Trigonometric Identities
 Chapter 5.1: Fundamental Identities
 Chapter 5.2: Verifying Trigonometric Identities
 Chapter 5.3: Sum and Difference Identities for Cosine
 Chapter 5.4: Sum and Difference Identities for Sine and Tangent
 Chapter 5.5: DoubleAngle Identities
 Chapter 5.6: HalfAngle Identities
 Chapter 6: Inverse Circular Functions and Trigonometric Equations
 Chapter 6.1: Inverse Circular Functions
 Chapter 6.2: Trigonometric Equations I
 Chapter 6.3: Trigonometric Equations II
 Chapter 6.4: Equations Involving Inverse Trigonometric Functions
 Chapter 7.1: Oblique Triangles and the Law of Sines
 Chapter 7.2: The Ambiguous Case of the Law of Sines
 Chapter 7.3: The Law of Cosines
 Chapter 7.4: Geometrically Defined Vectors and Applications
 Chapter 7.5: Algebraically Defined Vectors and the Dot Product
 Chapter 8: Complex Numbers, Polar Equations, and Parametric Equations
 Chapter 8.1: Complex Numbers
 Chapter 8.2: Trigonometric (Polar) Form of Complex Numbers
 Chapter 8.3: The Product and Quotient Theorems
 Chapter 8.4: De Moivres Theorem; Powers and Roots of Complex Numbers
 Chapter 8.5: Polar Equations and Graphs
 Chapter 8.6: Parametric Equations, Graphs, and Applications
Trigonometry 11th Edition  Solutions by Chapter
Full solutions for Trigonometry  11th Edition
ISBN: 9780134217437
Trigonometry  11th Edition  Solutions by Chapter
Get Full SolutionsThis expansive textbook survival guide covers the following chapters: 46. Trigonometry was written by and is associated to the ISBN: 9780134217437. This textbook survival guide was created for the textbook: Trigonometry, edition: 11. Since problems from 46 chapters in Trigonometry have been answered, more than 46027 students have viewed full stepbystep answer. The full stepbystep solution to problem in Trigonometry were answered by , our top Math solution expert on 03/19/18, 04:02PM.

Adjacency matrix of a graph.
Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

Associative Law (AB)C = A(BC).
Parentheses can be removed to leave ABC.

Block matrix.
A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

Column space C (A) =
space of all combinations of the columns of A.

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Determinant IAI = det(A).
Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

Elimination.
A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

Fourier matrix F.
Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

Full row rank r = m.
Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

Inverse matrix AI.
Square matrix with AI A = I and AAl = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B1 AI and (AI)T. Cofactor formula (Al)ij = Cji! detA.

Normal equation AT Ax = ATb.
Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b  Ax) = o.

Orthogonal matrix Q.
Square matrix with orthonormal columns, so QT = Ql. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Orthogonal subspaces.
Every v in V is orthogonal to every w in W.

Orthonormal vectors q 1 , ... , q n·
Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q 1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

Polar decomposition A = Q H.
Orthogonal Q times positive (semi)definite H.

Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.
Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

Row picture of Ax = b.
Each equation gives a plane in Rn; the planes intersect at x.

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Special solutions to As = O.
One free variable is Si = 1, other free variables = o.

Volume of box.
The rows (or the columns) of A generate a box with volume I det(A) I.