 Chapter 1: Trigonometric Functions
 Chapter 1.1: Angles
 Chapter 1.2: Angle Relationships and Similar Triangles
 Chapter 1.3: Trigonometric Functions
 Chapter 1.4: Using the Definitions of the Trigonometric Functions
 Chapter 2: Acute Angles and Right Triangles
 Chapter 2.1: Trigonometric Functions of Acute Angles
 Chapter 2.2: Trigonometric Functions of NonAcute Angles
 Chapter 2.3: Approximations of Trigonometric Function Values
 Chapter 2.4: Solutions and Applications of Right Triangles
 Chapter 2.5: Further Applications of Right Triangles
 Chapter 3: Radian Measure and the Unit Circle
 Chapter 3.1: Radian Measure
 Chapter 3.2: Applications of Radian Measure
 Chapter 3.3: The Unit Circle and Circular Functions
 Chapter 3.4: Linear and Angular Speed
 Chapter 4: Graphs of the Circular Functions
 Chapter 4.1: Graphs of the Sine and Cosine Functions
 Chapter 4.2: Translations of the Graphs of the Sine and Cosine Functions
 Chapter 4.3: Graphs of the Tangent and Cotangent Functions
 Chapter 4.4: Graphs of the Secant and Cosecant Functions
 Chapter 4.5: Harmonic Motion
 Chapter 5: Trigonometric Identities
 Chapter 5.1: Fundamental Identities
 Chapter 5.2: Verifying Trigonometric Identities
 Chapter 5.3: Sum and Difference Identities for Cosine
 Chapter 5.4: Sum and Difference Identities for Sine and Tangent
 Chapter 5.5: DoubleAngle Identities
 Chapter 5.6: HalfAngle Identities
 Chapter 6: Inverse Circular Functions and Trigonometric Equations
 Chapter 6.1: Inverse Circular Functions
 Chapter 6.2: Trigonometric Equations I
 Chapter 6.3: Trigonometric Equations II
 Chapter 6.4: Equations Involving Inverse Trigonometric Functions
 Chapter 7.1: Oblique Triangles and the Law of Sines
 Chapter 7.2: The Ambiguous Case of the Law of Sines
 Chapter 7.3: The Law of Cosines
 Chapter 7.4: Geometrically Defined Vectors and Applications
 Chapter 7.5: Algebraically Defined Vectors and the Dot Product
 Chapter 8: Complex Numbers, Polar Equations, and Parametric Equations
 Chapter 8.1: Complex Numbers
 Chapter 8.2: Trigonometric (Polar) Form of Complex Numbers
 Chapter 8.3: The Product and Quotient Theorems
 Chapter 8.4: De Moivres Theorem; Powers and Roots of Complex Numbers
 Chapter 8.5: Polar Equations and Graphs
 Chapter 8.6: Parametric Equations, Graphs, and Applications
Trigonometry 11th Edition  Solutions by Chapter
Full solutions for Trigonometry  11th Edition
ISBN: 9780134217437
Trigonometry  11th Edition  Solutions by Chapter
Get Full SolutionsThis expansive textbook survival guide covers the following chapters: 46. Trigonometry was written by and is associated to the ISBN: 9780134217437. This textbook survival guide was created for the textbook: Trigonometry, edition: 11. Since problems from 46 chapters in Trigonometry have been answered, more than 5032 students have viewed full stepbystep answer. The full stepbystep solution to problem in Trigonometry were answered by , our top Math solution expert on 03/19/18, 04:02PM.

Back substitution.
Upper triangular systems are solved in reverse order Xn to Xl.

CayleyHamilton Theorem.
peA) = det(A  AI) has peA) = zero matrix.

Complete solution x = x p + Xn to Ax = b.
(Particular x p) + (x n in nullspace).

Determinant IAI = det(A).
Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

Ellipse (or ellipsoid) x T Ax = 1.
A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA1 yll2 = Y T(AAT)1 Y = 1 displayed by eigshow; axis lengths ad

Full column rank r = n.
Independent columns, N(A) = {O}, no free variables.

Hankel matrix H.
Constant along each antidiagonal; hij depends on i + j.

Iterative method.
A sequence of steps intended to approach the desired solution.

Linearly dependent VI, ... , Vn.
A combination other than all Ci = 0 gives L Ci Vi = O.

Pascal matrix
Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

Polar decomposition A = Q H.
Orthogonal Q times positive (semi)definite H.

Positive definite matrix A.
Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(DÂ» O.

Rank r (A)
= number of pivots = dimension of column space = dimension of row space.

Singular Value Decomposition
(SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Spectrum of A = the set of eigenvalues {A I, ... , An}.
Spectral radius = max of IAi I.

Stiffness matrix
If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

Vandermonde matrix V.
V c = b gives coefficients of p(x) = Co + ... + Cn_IXn 1 with P(Xi) = bi. Vij = (Xi)jI and det V = product of (Xk  Xi) for k > i.

Vector space V.
Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

Vector v in Rn.
Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.
I don't want to reset my password
Need help? Contact support
Having trouble accessing your account? Let us help you, contact support at +1(510) 9441054 or support@studysoup.com
Forgot password? Reset it here