×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 4.5: Linear Algebra and Its Applications 5th Edition

Linear Algebra and Its Applications | 5th Edition | ISBN: 9780321982384 | Authors: David C. Lay; Steven R. Lay; Judi J. McDonald

Full solutions for Linear Algebra and Its Applications | 5th Edition

ISBN: 9780321982384

Linear Algebra and Its Applications | 5th Edition | ISBN: 9780321982384 | Authors: David C. Lay; Steven R. Lay; Judi J. McDonald

Solutions for Chapter 4.5

Solutions for Chapter 4.5
4 5 0 239 Reviews
15
2
Textbook: Linear Algebra and Its Applications
Edition: 5
Author: David C. Lay; Steven R. Lay; Judi J. McDonald
ISBN: 9780321982384

Linear Algebra and Its Applications was written by and is associated to the ISBN: 9780321982384. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 4.5 includes 34 full step-by-step solutions. This textbook survival guide was created for the textbook: Linear Algebra and Its Applications , edition: 5. Since 34 problems in chapter 4.5 have been answered, more than 40800 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password