×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
Textbooks / Math / Linear Algebra 4

Linear Algebra 4th Edition - Solutions by Chapter

Linear Algebra | 4th Edition | ISBN: 9780130084514 | Authors: Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence

Full solutions for Linear Algebra | 4th Edition

ISBN: 9780130084514

Linear Algebra | 4th Edition | ISBN: 9780130084514 | Authors: Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence

Linear Algebra | 4th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 267 Reviews
Textbook: Linear Algebra
Edition: 4
Author: Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence
ISBN: 9780130084514

This textbook survival guide was created for the textbook: Linear Algebra , edition: 4. This expansive textbook survival guide covers the following chapters: 43. The full step-by-step solution to problem in Linear Algebra were answered by , our top Math solution expert on 07/25/17, 09:33AM. Since problems from 43 chapters in Linear Algebra have been answered, more than 9910 students have viewed full step-by-step answer. Linear Algebra was written by and is associated to the ISBN: 9780130084514.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password