×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Linear Algebra and Its Applications 4

Linear Algebra and Its Applications 4th Edition - Solutions by Chapter

Linear Algebra and Its Applications | 4th Edition | ISBN: 9780321385178 | Authors: David C. Lay

Full solutions for Linear Algebra and Its Applications | 4th Edition

ISBN: 9780321385178

Linear Algebra and Its Applications | 4th Edition | ISBN: 9780321385178 | Authors: David C. Lay

Linear Algebra and Its Applications | 4th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 385 Reviews
Textbook: Linear Algebra and Its Applications
Edition: 4
Author: David C. Lay
ISBN: 9780321385178

The full step-by-step solution to problem in Linear Algebra and Its Applications were answered by , our top Math solution expert on 08/10/17, 10:08AM. Since problems from 65 chapters in Linear Algebra and Its Applications have been answered, more than 150787 students have viewed full step-by-step answer. Linear Algebra and Its Applications was written by and is associated to the ISBN: 9780321385178. This textbook survival guide was created for the textbook: Linear Algebra and Its Applications, edition: 4. This expansive textbook survival guide covers the following chapters: 65.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.