 Chapter 1.1:
 Chapter 1.2:
 Chapter 1.3:
 Chapter 1.4:
 Chapter 1.5:
 Chapter 1.6:
 Chapter 2.1:
 Chapter 2.2:
 Chapter 2.3:
 Chapter 2.4:
 Chapter 2.5:
 Chapter 2.6:
 Chapter 3.1:
 Chapter 3.2:
 Chapter 3.3:
 Chapter 3.4:
 Chapter 3.5:
 Chapter 3.6:
 Chapter 3.7:
 Chapter A:
Differential Equations and Linear Algebra 3rd Edition  Solutions by Chapter
Full solutions for Differential Equations and Linear Algebra  3rd Edition
ISBN: 9780136054252
Differential Equations and Linear Algebra  3rd Edition  Solutions by Chapter
Get Full SolutionsDifferential Equations and Linear Algebra was written by and is associated to the ISBN: 9780136054252. Since problems from 20 chapters in Differential Equations and Linear Algebra have been answered, more than 9653 students have viewed full stepbystep answer. This expansive textbook survival guide covers the following chapters: 20. The full stepbystep solution to problem in Differential Equations and Linear Algebra were answered by , our top Math solution expert on 08/31/17, 10:46AM. This textbook survival guide was created for the textbook: Differential Equations and Linear Algebra, edition: 3.

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

Characteristic equation det(A  AI) = O.
The n roots are the eigenvalues of A.

Column picture of Ax = b.
The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

Cyclic shift
S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

GramSchmidt orthogonalization A = QR.
Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Incidence matrix of a directed graph.
The m by n edgenode incidence matrix has a row for each edge (node i to node j), with entries 1 and 1 in columns i and j .

Kirchhoff's Laws.
Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

Linear transformation T.
Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

Linearly dependent VI, ... , Vn.
A combination other than all Ci = 0 gives L Ci Vi = O.

Markov matrix M.
All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

Multiplicities AM and G M.
The algebraic multiplicity A M of A is the number of times A appears as a root of det(A  AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

Normal equation AT Ax = ATb.
Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)ยท(b  Ax) = o.

Orthogonal matrix Q.
Square matrix with orthonormal columns, so QT = Ql. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Projection matrix P onto subspace S.
Projection p = P b is the closest point to b in S, error e = b  Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) 1 AT.

Rank one matrix A = uvT f=. O.
Column and row spaces = lines cu and cv.

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Spectral Theorem A = QAQT.
Real symmetric A has real A'S and orthonormal q's.

Unitary matrix UH = U T = UI.
Orthonormal columns (complex analog of Q).

Volume of box.
The rows (or the columns) of A generate a box with volume I det(A) I.