×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide

Solutions for Chapter 3: Displaying and Describing Categorical Data

Stats: Modeling The World | 3rd Edition | ISBN: 9780131359581 | Authors: David E. Bock

Full solutions for Stats: Modeling The World | 3rd Edition

ISBN: 9780131359581

Stats: Modeling The World | 3rd Edition | ISBN: 9780131359581 | Authors: David E. Bock

Solutions for Chapter 3: Displaying and Describing Categorical Data

Solutions for Chapter 3
4 5 0 336 Reviews
11
3
Textbook: Stats: Modeling The World
Edition: 3
Author: David E. Bock
ISBN: 9780131359581

Stats: Modeling The World was written by and is associated to the ISBN: 9780131359581. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 3: Displaying and Describing Categorical Data includes 40 full step-by-step solutions. Since 40 problems in chapter 3: Displaying and Describing Categorical Data have been answered, more than 39086 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Stats: Modeling The World , edition: 3.

Key Statistics Terms and definitions covered in this textbook
  • 2 k factorial experiment.

    A full factorial experiment with k factors and all factors tested at only two levels (settings) each.

  • Backward elimination

    A method of variable selection in regression that begins with all of the candidate regressor variables in the model and eliminates the insigniicant regressors one at a time until only signiicant regressors remain

  • Bernoulli trials

    Sequences of independent trials with only two outcomes, generally called “success” and “failure,” in which the probability of success remains constant.

  • Bimodal distribution.

    A distribution with two modes

  • Cause-and-effect diagram

    A chart used to organize the various potential causes of a problem. Also called a ishbone diagram.

  • Chance cause

    The portion of the variability in a set of observations that is due to only random forces and which cannot be traced to speciic sources, such as operators, materials, or equipment. Also called a common cause.

  • Conditional probability density function

    The probability density function of the conditional probability distribution of a continuous random variable.

  • Continuous random variable.

    A random variable with an interval (either inite or ininite) of real numbers for its range.

  • Critical value(s)

    The value of a statistic corresponding to a stated signiicance level as determined from the sampling distribution. For example, if PZ z PZ ( )( .) . ? =? = 0 025 . 1 96 0 025, then z0 025 . = 1 9. 6 is the critical value of z at the 0.025 level of signiicance. Crossed factors. Another name for factors that are arranged in a factorial experiment.

  • Design matrix

    A matrix that provides the tests that are to be conducted in an experiment.

  • Designed experiment

    An experiment in which the tests are planned in advance and the plans usually incorporate statistical models. See Experiment

  • Empirical model

    A model to relate a response to one or more regressors or factors that is developed from data obtained from the system.

  • Error mean square

    The error sum of squares divided by its number of degrees of freedom.

  • Estimate (or point estimate)

    The numerical value of a point estimator.

  • Exhaustive

    A property of a collection of events that indicates that their union equals the sample space.

  • Extra sum of squares method

    A method used in regression analysis to conduct a hypothesis test for the additional contribution of one or more variables to a model.

  • F distribution.

    The distribution of the random variable deined as the ratio of two independent chi-square random variables, each divided by its number of degrees of freedom.

  • Factorial experiment

    A type of experimental design in which every level of one factor is tested in combination with every level of another factor. In general, in a factorial experiment, all possible combinations of factor levels are tested.

  • Fraction defective

    In statistical quality control, that portion of a number of units or the output of a process that is defective.

  • Gaussian distribution

    Another name for the normal distribution, based on the strong connection of Karl F. Gauss to the normal distribution; often used in physics and electrical engineering applications

×
Log in to StudySoup
Get Full Access to Statistics - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Statistics - Textbook Survival Guide
×
Reset your password